

 <div id="preview-container">

 <h1>project.pdf</h1>
 ARC Collaborative

(TP)I : (Timed/Probabilistic) Interfaces

 Aalborg - Nantes - Rennes (INRIA)

 Summary

 Several industrial sectors involving complex embedded systems have re-

 cently experienced deep changes in their organization, aerospace and

 automotive being the most prominent examples. In the past, they were

 organized around vertically integrated companies, supporting in-house

 design activities from speciﬁcation to implementation. Nowadays, sys-

 tems are tremendously big and complex, and it is almost impossible for

 one single team to have the complete control of the entire chain of de-

 sign from the speciﬁcation to the implementation. In fact, complex sys-

 tems now result from the assembling of several components. These many

 components are in general designed by teams, working independently

 but with a common agreement on what the interface of each component

 should be. Such an interface precises the behaviors expected from the

 component as well as the environment in where it can be used. The main

 advantage is that it does not impose any constraint on the way the com-

 ponent is implemented, hence allowing for independent implementation.

 According to state of practice, interfaces are typically described using

 Word/Excel text documents or modeling languages such as UML/XML.

 We instead recommend relying most possibly on mathematically sound

 formalisms, thus best reducing ambiguities. We propose to study mathe-

 matical formalisms for interface theories with all the operators needed to

 reason on them in a proper way, i.e., composition, reﬁnement, quotient,

 and dissimilar alphabets. We will also focus on implementation (integra-

 tion in UPPAAL and INTERSMV toolsets) and eﬃcient algorithms. Our

 results will be extended to timed and stochastic systems. Finally, we will

 also consider concurrency and modular veriﬁcation.

 1

�1 Structure of the document and summary of the

 proposition

 This document is a proposal for an ARC Collaborative ; it is pided into four

sections. In Section 2, we present the partners involved in the proposition. In Section

3, we present our research proposal on interface theories. The proposal contains a

brief state-of-the art, our objectives, a research calendar, and the competences of the

partners. Section 4 discusses the meetings and the costs. Finally Section 5 brieﬂy

discusses related research projects.

2 The teams

 The project will be leaded by Axel Legay, CR2 at INRIA/IRISA Rennes since

December 2008. Three teams are involved in the application : S4 (INRIA, Rennes),

IRCCyN (Nantes), and Aalborg (Denmark). Competences provided by the members

of these teams will be emphasized in the research proposal (see Section 3.5). The

rest of this section provides a brief description of the teams.

 1. The S4 Team at INRIA/IRISA Rennes. The team is leaded by Benoˆ Caillaud.

 ıt

 Members of the S4 team that will be involved in the project : Axel Legay,

 Benoˆ Delahaye (PhD Student), and Benoˆ Caillaud. Claude Jard, professor

 ıt ıt

 at ENS Cachan and member of the DISTRIBCOM team at IRISA/INRIA

 Rennes will also be involved in the project.

 2. IRCCyN Nantes. Members of the IRCCyN team involved in the project : Di-

 dier Lime and Olivier H. Roux.

 3. Aalborg Team leaded by Kim Larsen in Denmark. Members of the Aalborg

 team that will be involved in the project : Kim Larsen, Alexandre David. Mik-

 kel Pedersen, PhD student of the team will also be involved. Andrzej Wasowski,

 an associate professor at IT Unviersity of Copenhagen and collaborator of Kim

 Larsen within the MT-LAB project (www.mtlab.dk) will also be involved.

Remark 1 Other members of the S4 and the VERTECS teams at Rennes such as

Albert Benveniste and Nathalie Bertrand and Sophie Pinchinat have shown interest

to our project and will punctually contribute.

 2

�3 The project

3.1 Scientiﬁc focus

 Several industrial sectors involving complex embedded systems have recently

experienced deep changes in their organization, aerospace and automotive being

the most prominent examples. In the past, they were organized around vertically

integrated companies, supporting in-house design activities from speciﬁcation to

implementation.

 Nowadays, systems are tremendously big and complex, and it is almost impos-

sible for one single team to have the complete control of the entire chain of design

from the speciﬁcation to the implementation. In fact, complex systems now result

from the assembling of several components. These many components are in general

designed by teams, working independently but with a common agreement on what

the interface of each component should be. Such an interface precises the beha-

viors expected from the component as well as the environment in where it can be

used. The main advantage is that it does not impose any constraint on the way the

component is implemented :

 Several components can be implemented by diﬀerent teams of engineers

 providing that those teams respect the interfaces on which all of them

 agree.

 According to state of practice, interfaces are typically described using Word/Excel

text documents or modeling languages such as UML/XML. We instead recommend

relying most possibly on mathematically sound formalisms, thus best reducing am-

biguities. Mathematical foundations that allow to reason at the abstract level of

interfaces, in order to infer properties of the global implementation, and to de-

sign or to advisedly (re)use components is a very active research area, known as

compositional reasoning [45]. Aiming at practical applications in ﬁne, the software

engineering point of view naturally leads to the following requirements for a good

theory of interfaces.

Remark 2 In the rest of the document, one will use the following equivalences (de-

pending on the context) : speciﬁcation = interface ; implementation = component.

 1. It should be decidable whether an interface admits an implementation (a mo-

 del). This means that one should be capable to decide whether the require-

 ments stated by the interface can be implemented. One should also be capable

 to synthesize an implementation for such an interface. In our theory, an im-

 plementation shall not be viewed as a programming language but rather as a

 mathematical object that represents a set of programming languages sharing

 3

� common properties. The ability to decide whether a given component imple-

 ments a given interface is of clear importance, and this must be performed

 with eﬃcient algorithms.

2. It is important to be able to replace a component by another one without

 modifying the behaviors of the whole design. At the level of interfaces, this

 corresponds to the concept of Reﬁnement. Reﬁnement allows one to replace, in

 any context, an interface by a more detailed version of it. Reﬁnement should

 entail substitutability of interface implementations, meaning that every im-

 plementation satisfying a reﬁnement also satisﬁes the larger interface. For the

 sake of controlling design complexity, it is desirable to be able to decide whe-

 ther there exists an interface that reﬁnes two diﬀerent interfaces. This is called

 shared reﬁnement. In many situations, we are looking for the greatest lower

 bound , i.e., the shared reﬁnement that could be reﬁned by any other shared

 reﬁnement.

3. Large systems are concurrently developed for their diﬀerent aspects or view-

 points by diﬀerent teams using diﬀerent frameworks and tools. Examples of

 such aspects include the functional aspect and the safety aspect. Each of these

 aspects requires speciﬁc frameworks and tools for their analysis and design.

 Yet, they are not totally independent but rather interact. The issue of dealing

 with multiple aspects or multiple viewpoints is thus essential. This implies that

 several interfaces are associated with a given component, namely (at least) one

 per viewpoint. These interfaces are to be interpreted in a conjunctive way. This

 conjunction operation should satisfy the following property :

 Given two view-points represented by two interfaces, any implemen-

 tation that satisﬁes the conjunction must satisfy the two view-points.

4. The interface theory should also provide a combination operation, which re-

 ﬂects the standard interaction/composition between systems. In practice, one

 should be capable to decide whether there exists at least one environment

 in where two components can work together, i.e., in where the composition

 makes sense. Another, but more diﬃcult, objective is to synthesize such an

 environment. Finally, the composition operation should satisfy the following

 property :

 Given two components satisfying two interfaces, the theory must en-

 sure that the composition of the two components satisﬁes the com-

 position of their corresponding interfaces.

5. A quotient operator, dual to composition is of interest to perform incremental

 4

� design. Intuitively, the quotient enables to describe a part of a global speciﬁ-

 cation assuming another part is already realized by some component.

 6. Complex systems are built by combining components possessing dissimilar

 alphabets for referencing ports and variables. It is thus important to properly

 handle those diﬀerent alphabets when combining interfaces.

All the above operations and properties should be checked and performed with ef-

ﬁcient algorithms. In addition, a good interface theory should have the independent

implementability property. More precisely, the operations of conjunction and compo-

sition must be associative, meaning that the systems can be composed in any order.

Moreover, those operations should be stable with respect to reﬁnement.

 Our main objective is to provide new mathematical foundations for interface

theories. The rest of the document is pided into four sections. In Section 5, we

will discuss existing results on interface theories. In Section 3.3, we will describe our

research proposal. Sections 3.4 and 3.5 discuss the calendar and the competences,

respectively.

3.2 State-of-the-art (brief account on)

 Building good interface theories has been the subject of intensive studies (see,

e.g., [45, 33, 19, 37, 43, 32, 35]) and the concept ﬁnd applications in a wide range of

areas including web services [16] and product lines [56, 48]. Recently, two models have

been emphasized : (1) interface automata [33] and (2) modal speciﬁcations [47]. Inter-

face automata is a game-based variation of the well-known model of input/output

automata [54] which deals with open systems, their reﬁnement and composition,

and puts the emphasis on interface compatibility. Modal speciﬁcations is a language

theoretic account of a fragment of the modal mu-calculus logic [42] which admits a

richer composition algebra with product, conjunction and quotient operators.

 Modal speciﬁcations correspond to deterministic modal automata [47], i.e., au-

tomata whose transitions are typed with may and must modalities. A modal spe-

ciﬁcation thus represents a set of implementations ; informally, a must transition is

available in every component that implements the modal speciﬁcation, while a may

transition needs not be. The components that implement modal speciﬁcations are

preﬁx-closed languages, or equivalently deterministic automata/transition systems.

 Satisﬁability of modal speciﬁcations is decidable. Reﬁnement between modal spe-

ciﬁcations coincides with language inclusion [47]. Conjunction is eﬀectively computed

via a product-like construction. It can be shown that the conjunction of two modal

speciﬁcations correspond to their greatest common reﬁnement. Combination of mo-

dal speciﬁcations, handling synchronization products ` la Arnold and Nivat [7], and

 a

 5

�the dual quotient operator can be eﬃciently handled in this setting [58, 59].

 In interface automata [33], an interface is represented by an input/output auto-

maton [54], i.e., an automaton whose transitions are labeled with input or output

actions. The semantics of such an automaton is given by a two-player game : an

Input player represents the environment, and an Output player represents the com-

ponent itself. Interface automata do not encompass any notion of implementation,

because one cannot distinguish between interfaces and implementations.

 Reﬁnement between interface automata corresponds to the alternating reﬁne-

ment relation between games [5], i.e., an interface reﬁnes another if its environment

is more permissive whereas its component is more restrictive. Shared reﬁnement is

deﬁned in an ad-hoc manner [36] for a particular class of interfaces [27]. Contrary

to most interfaces theories, the game-based interpretation oﬀers an optimistic treat-

ment of composition : two interfaces can be composed if there exists at least one

environment (i.e., one strategy for the Input player) in which they can interact to-

gether in a safe way (i.e., whatever the strategy of the Output player is). This is

referred to as compatibility of interfaces. A quotient, which is the adjoint of the

game-based composition, has been proposed in [18].

 It is worth mentioning that, in existing work on interface automata and modal

speciﬁcations, there is nothing about dissimilar alphabets. This is somehow surpri-

sing as it seems to be a quite natural question when performing operations that

involve several components, e.g., conjunction, composition, and quotient. In fact, as

stated in [60], an explicit mechanism to handle dissimilar alphabets is not needed

when considering interface automata, since conjunction is not discussed for this mo-

del. For the case of composition/quotient, instead, we shall see that the notion is

implicitly encompassed in the deﬁnition of compatibility. Conjunction and quotient

operators [47, 58, 59] that have been proposed for modal speciﬁcation do not take

dissimilar alphabet into account.

In conclusion, both models have advantages and disadvantages :

 – Interface automata is a model that allows designers to make assumptions on

 the environment, which is mainly useful to derive a rich notion for composition.

 In addition, the notion of dissimilar alphabets is not needed. Unfortunately,

 the model is incomplete as conjunction and shared reﬁnement are not deﬁned.

 – Modal speciﬁcation is a rich language algebra model on which most of require-

 ments for a good interface theory can be considered. Unfortunately, may and

 must modalities are not suﬃcient to derive a rich notion for composition in-

 cluding compatibility. Moreover, the notion of dissimilar alphabets is missing.

 6

� In a recent work, we have proposed a new model called modal interfaces [48, 60],

which combines advantages of modal speciﬁcations and interface automata. Roughly

speaking, modal interfaces are modal speciﬁcations combined with the composition

operation developed for interface automata. The idea is to typeset the may and must

transition with Inputs and Outputs that are used only when performing the com-

position operation and barely ignored otherwise. The model also encompasses the

concept of dissimilar alphabets. We have proposed eﬃcient algorithms for computing

composition, conjunction, and quotient as well as to check for reﬁnement and satis-

ﬁability. The model of modal interfaces (and several extensions) is implemented in a

tool called INTERSMV (the ﬁrst version of the tool will be released in January 2010

for the review of the European Project COMBEST [30]). The tool relies on powerful

symbolic representations (combination of Binary Decision Diagrams [24]) that allow

for conciseness and eﬃciency. INTERSMV is currently evaluated on several case

studies coming from two European projects : COMBEST [30] and SPEEDS [61].

Remark 3 As we shall see in Section 3.3.2, probabilistic and timed extensions of

interface theories also exist. However, the development of these models does not

reach the maturity of the one of modal interfaces.

3.3 Our objectives

 Our objectives are (1) to improve the theory of modal interfaces and (2) to study

extensions that will allow to model a broader class of systems as well as to express

more interactions between them. Our research proposal can be pided in four main

parts :

 1. In Section 3.3.1, we propose several directions to improve existing results on

 modal interfaces. This includes heuristics to increase the eﬃciency of the al-

 gorithms as well as generalizing existing operators.

 2. In Section 3.3.2, we propose several extensions of interface theories in order to

 take stochastic and timed behaviors into account.

 3. In Section 3.3.3, we suggest to use interface theories in order to verify a system

 by looking at its various components.

 4. In Section 3.3.4 we propose a new operator to handle concurrency in an explicit

 manner.

The two ﬁrst parts of the proposal suggest extensions of the work we conducted over

the two last years. The last two points suggest new research directions.

3.3.1 Improving the modal interfaces framework

 As stated above, the algorithms developed for modal interfaces are already

quite eﬃcient. However, we believe that there is still room for improvements. As

 7

�an example, most of existing algorithms for computing the composition of two in-

terfaces do not try to reduce the size1 of the result. It is thus not diﬃcult to ﬁnd

situations where the composition algorithm produces a huge automaton while a very

small one also exists [17, 38]. We will investigate heuristic methods such as learning

algorithms [6] (already deployed for interface automata [17, 38]) or sat-solvers [17] to

improve the composition operator.

 Our implementation of modal interfaces can incorporate variables. This is a fea-

ture that is not present in most of existing interface theories. Those variables can be

used, as an example, to model global and shared resources [32]. Due to the imple-

mentation and for decidability reasons, those variables have to be range-bounded.

It is however sometimes more convenient to use an inﬁnite-state representation (see

[64] for an overview). As an example, consider a system manipulating integer va-

riables ; it may be easier to assume that those variables are not bounded rather than

ﬁxing an arbitrary maximal value2 for them [21, 11, 12]. Another example is the

one of communication protocols : it may be better to assume that the number of

places in a communication channel is not bounded rather than assuming an arbi-

trary bound which may not reﬂect the reality [20]. We believe that all the algorithms

developed for modal interfaces extend to (semi-)algorithms for inﬁnite-state inter-

faces. For doing so, we propose to use principles that are similar to those introduced

in [22, 23, 34, 10, 1].

 Finally, we would like to extend the theory in order to handle nondeterministic

behaviors. Nondeterminism may arise when the system has to take internal decisions

that are not visible to the external world. A part of the theory of interface automata

and modal speciﬁcations already extends to this setting. However, there is nothing

for the quotient operator.

Remark 4 There exists several other works on quotient for nondeterministic sys-

tems (e.g., [8, 49, 65]). It is worth mentioning that those works propose techniques

that are either capable to synthesize an formula or a system, but not a modal inter-

face3.

3.3.2 Probabilities and time

 Stochastic and timed aspects have not been studied in details for interface theo-

ries. Those aspects are however of crucial interest. Time can be a crucial parameter

in practice, for example in embedded systems. Probabilities can be used to ensure

fairness and robustness of communication systems as well as to model faults.

 1

 In terms of number of states.

 2

 The size of the range would depend on the architecture.

 3

 Not even a modal speciﬁcation.

 8

� In a very recent work [25], we have proposed what seems to be the ﬁrst complete

interface theory for stochastic systems. In our theory, systems are represented by

Markov Chains and interfaces by Constraint Markov Chains (CMCs in short). CMCs

are Markov Chains whose probability distributions are replaced by constraints that

represent a set of probability distributions4 . The model thus allows to ﬁnitely re-

present a possibly inﬁnite set of Markov Chains.

 CMCs’s theory currently suﬀers from a major drawback : it does not allow for

non stochastic behavior. This is problematic since it is well-known that many models

require to mix stochastic and nonstochastic behaviors.

 We propose to enrich CMCs with nonstochastic behaviors by adding may and

must transitions to the model. In the new model, one will distinguish between two

types of states : (1) the stochastic states in where one moves to some next state

with a given probability (example : there is a probability that the system moves

with some fault and a probability that it moves correctly), and (2) the nondetermi-

nistic states in where one may or must move to some next state, depending of the

choice made by the component/environment. This new extension, which we will cal-

led Constraint Modal Markov Decision Processes (CMMDPs in short), corresponds

to an interface theory for Markov Decision Processes (such a theory does not yet

exists). We believe that the algorithms and the theory for CMMDPS could be ob-

tained from a combinations of those deﬁned for CMCs and those deﬁned for modal

speciﬁcations. The main diﬃculty will be to make this combination in such a way

that the new model satisﬁes all good requirements for an interface theory as well as

the independent design property. We also plan to give a game-based ﬂavor to the

composition operation. Like for modal interfaces, this should be done by equipping

the nonprobabilistic transitions with Inputs and Outputs modalities.

 As a second step, we plan to move from Markov Decision Processes to Proba-

bilistic timed automata [46], i.e., timed automata whose discrete transitions may be

enriched with stochastic behaviors. For doing so, we will enrich CMMDPS with

clocks. This will mainly impact the semantic of the may and must transitions. We

already studied modal event-clock speciﬁcations, a timed extension of modal speciﬁ-

cations [15, 14]. We propose to marry the algorithms developed for modal event-clock

speciﬁcations with those we will propose for CMMDPS. In a second step, we also

plan to study a timed extension the modal interface theory, i.e., an extension of

timed modal speciﬁcation with Inputs and Outputs modalities in addition to the

may and must modalities. In this context, we propose to deﬁne a new timed game to

perform the composition operation. Our deﬁnitions should ensure that one cannot

win the game with a strategy that blocks the time. It is known that considering

non-blocking strategies makes it harder to ensure the independent implementability

 4

 As an example, each transition can be equipped with an interval and the probability to take

this transition is any value in the interval [41].

 9

�property even for the simple case of interface automata [35, 31].

 The new theories will be implemented in the UPPAAL Toolset [63]. UPPAAL is

a tool for the speciﬁcation and the veriﬁcation of timed systems, which has recently

been enriched with probabilistic timed automata. UPPAAL is under development

and maintained since more than ten years. The tool has been downloaded 30 000

times and successfully applied to various case studies submitted by industrial part-

ners 5 (NASA, CNES, Bosch, ABB, ...). Its development is strategic for Aalborg

university. UPPAAL provide eﬃcient data structures to manipulate probabilistic ti-

med automata. The tool also proposes several game-based algorithms for checking

composition of timed automata. We believe that these features will serve as a good

basis to develop eﬃcient algorithms and data structures for our new models.

Remark 5 We will not implement the probabilistic/timed extension of interface

theories in INTERSMV. Indeed, INTERSMV is a tool that uses eﬃcient data struc-

ture and symbolic representations that are designed for nondeterministic systems

only. We have no hope that such structures can be adapted to time and probabilistic

systems.

Remark 6 We hope that some of the results we will obtain in Section 3.3.1 will also

extend to the new models discussed in this section. However, we will not consider

the quotient operator. Indeed, this operator is not deﬁned for CMCs and we believe

that it is a very diﬃcult problem that deserves its own research project.

3.3.3 Modular veriﬁcation and link with temporal logics

 We believe that it is important to provide engineers with a mechanism to check

whether the interfaces they specify satisfy some requirements written in a concise

language. For doing so, we propose to express such requirements with temporal lo-

gics [4, 57, 29, 3, 28]. One should thus be capable to decide whether an interface

satisﬁes a given property expressed in such a logic – which also implies that any im-

plementation of the interface should also satisfy the property. Moreover, one should

be capable to decide whether the whole design satisﬁes a given property only by

observing the properties satisﬁed by its components. This approach is called modu-

lar veriﬁcation. It is a very important feature as it allows to reduce the complexity

of the veriﬁcation process 6 . We propose to enrich our models with a (modular)

veriﬁcation procedure. This is a tedious task, especially when taking stochastic and

timed behaviors into account (see [40] for discussions regarding the case of stochastic

systems).

 5

 The tool oﬀers nice user interfaces that allow for a direct use by industrials/engineers. Those

interfaces are deﬁnitively part of the success of UPPAAL.

 6

 There are also situations where the veriﬁcations techniques are not powerful enough to work

on the whole design, but can give an answer when considering the components separately.

 10

� Observe that Modular veriﬁcation already exists at the level of components

through the conjunction operation : the conjunction of two components must sa-

tisfy the conjunction of their corresponding interfaces. Here we go one step further

since we consider the level of interfaces rather than the one of components. Other

alternatives exist. As an example, one could imagine to use temporal logics as a

formalism for representing interfaces. However, we believe that operations such as

composition or reﬁnement are much more easier to understand at the level of auto-

mata than at the one of formula.

 One of the major diﬃculties here will be to ensure that if an interface satisﬁes

some property, then the property is also satisﬁed by any component that is an

implementation of the interface. This is a hard problem, especially when considering

combination operators such as conjunction, composition, or reﬁnement.

Remark 7 The tool Chic [27] proposes to specify properties of interface automata

with the Alternating Temporal Logic [4]. However, there is nothing about modular

veriﬁcation for such interfaces.

Remark 8 The above proposal does not discuss the choice of the temporal logic that

will be used. This choice will mostly depend on the model under consideration.

 Another interesting problem related to temporal logics is the one that consists

in synthesizing an interface from a given property. It would also be of interest to

be capable to synthesize a composition for two interfaces and to ensure that this

composition also satisﬁes some property. Up to now, the composition operation

deﬁned for interface automata (and hence for modal interfaces) only ensures that

their exists an environment in where the two interfaces can work together. This

environment may either be useless or too permissive, hence the use of temporal

logic to make hypothesis on its behaviors.

Remark 9 There are a lot of work on synthesizing an automaton from a formula

but, to the best of our knowledge, nothing has been done on modal interfaces or on

its probabilistic/timed variants. What we suggest for composition is also deﬁnitively

new.

 Finally, model checking temporal properties of interfaces raises the problem of

describing counter-examples for those cases where the formula is not satisﬁed. Fin-

ding a nice way to report such counter-examples to the user should also be investi-

gated.

 11

�3.3.4 Concurrency made explicit

 The composition operator naturally introduces concurrency into the system but

the usual analysis techniques will explicitly or implicitly compute the product of all

the components, thus destroying this concurrency. We will therefore investigate the

possibility of maintaining the concurrency of the interfaces expressed as multiple

components through the use of true concurrency semantics and unfoldings [39, 55].

One possible interest of considering such concurrent interfaces is to explicit causal

dependencies, which could be of great importance in speciﬁcations. The question

of composition, conjunction, reﬁnement, and even causalities [62, 66] raise a lot of

original problems when considering this new operator. Observe also that maintaining

concurrency may allow to avoid building a huge automaton for the composition

operation (see Section 3.3.1).

Remark 10 UPPAAL already allows for an explicit representation of concurrence.

However, this is only for the composition deﬁned on timed automata [3] or the one

deﬁned on timed input/output automata [44, 13]. Those compositions are much

simpler than the one deﬁned on interfaces.

3.4 Calendar

 Some results on improving modal interfaces and timed/probabilistic extensions

should be obtained at the end of the ﬁrst year. We are quite conﬁdent since (1) we

already have some preliminary results on stochastic and timed systems that could be

extended, and (2) INTERSMV should serve as a good basis to observe interactions

between components and to develop heuristics to improve the composition opera-

tion. Nondetermism and inﬁnite-state extensions should be investigated during the

second year.

 Modular veriﬁcation and concurrency, which are new directions in this area, will

be studied in parallel. We will start with modal interfaces and, if successful, we will

move to timed/stochastic extensions.

3.5 Competences of partners and interactions

 By reading the research proposal, one can see that competences are needed in

(at least) ﬁve areas : (1) interface theories, (2) timed systems, (3) probabilistic

systems, (4) concurrent systems, and (5) implementation of mathematical theories

with a practical evaluation. We now give more insights regarding the competences

provided by each partner and the existing collaborations between them. It is worth

mentioning that collaborations already exist between all the teams.

 12

� 1. Both Axel Legay and Benoˆ Caillaud are experts in interface theories on

 ıt

 which they wrote several papers. In addition to the models of modal interfaces

 and timed modal speciﬁcations, Axel Legay has collaborated with NASA and

 is the author of a tool called TICC [2]. This tools implements the theory of

 interface automata (with the exception of the quotient operator) and one of its

 extensions called sociable interfaces [32]. He also proposed several new model

 checking techniques for inﬁnite-state and stochastic systems as well as new

 algorithms to solve (timed) games. Those algorithms have been implemented

 in three tools : LASH [50], T(O)RMC [51], and APEX [52]. Benoˆ Caillaud

 ıt

 has been working on topics related to the synthesis and control of concurrent

 systems. He is the author of the Synet Petri-net synthesis software [9], a tool

 which has found applications in work-ﬂow engineering and communicating

 distributed control synthesis. Claude Jard is an expert in concurrency, timed

 systems, and unfolding theory. Recently, in cooperation with Thomas Chatain,

 he solved the problem of constructing ﬁnite complete preﬁxes of unfoldings

 of safe time Petri nets. A similar work has also been done for networks of

 timed automata and is based on symbolic representations [26]. His current

 interest is the introduction of parameters and the use of unfolding in dynamical

 veriﬁcation (supervision) in cooperation with the IRCCyN’s group.

 2. Both Didier Lime and Olivier H. Roux are experts in (concurrent) timed sys-

 tems and their implementation. They are the core developers of the Romeo

 tool [53] for the veriﬁcation of time Petri nets. They have been doing some

 recent work on symbolic unfoldings with Claude Jard. Didier Lime is also ex-

 pert in timed games and participates in the development of UPPAAL with

 Aalborg, especially UPPAAL-Tiga, the ﬂavor of Uppaal dedicated to timed

 games.

 3. Kim Larsen and his team are experts in the area of timed systems. Together

 with various team members, Larsen developed and promoted the UPPAAL

 toolset. Kim Larsen has ongoing collaborations with S4 on interface theories

 (especially stochastic and timed extensions [25, 31]). He also has a wide know-

 ledge of probabilistic systems and probabilistic timed automata.

The three teams share common competences but are also complementary. As an

example, Rennes is the leader for interface theories and the development of INTER-

SMV but it needs competences from IRCCyN when considering (concurrent) timed

systems, especially when switching to implementation in UPPAAL and modular

veriﬁcation. This knowledge is easily exploitable due to the geographic proximity

of Nantes and Rennes. Aalborg is an indisputable partner. Indeed, they will pro-

vide other teams with UPPAAL, and they are the one who have the expertise on

probabilistic timed automata and their implementation.

 13

�4 Meetings and Costs

 We plan to have bimensual meetings as well as several visits between the mem-

bers of the diﬀerent teams. We will also organize a workshop to present our results

at the end of the second year. Regarding the costs, we would like to ask for 20000

euros for the ﬁrst year and between 20000 and 25000 euros for the second year (the

5000 euros diﬀerence would be for the organization of the workshop).

 Since the teams involved in the project are not located in the same site/city/country,

we believe that a postdoctoral student will be of a great help in order to coordinate

a part of the work. The student will work full time on the project and she/he will

mainly focus on probabilistic and timed extensions (see Section 3.3.2). One of her/his

main duty will be to be responsible for the development of eﬃcient algorithms for

handling such models. She/he will also be responsible for the implementation in

UPPAAL. The postdoc will be employed by the S4 team at Rennes and she/he will

have to visit the other teams.

 In this proposition, implementation represents a substantial amount of work. In

order to help us to make this objective, we will also apply for an engineer (ADT

2010). The engineer will work in close collaboration with the UPPAAL team. She/he

will also participate to the development of INTERSMV.

 As a summary, we ask for money to (1) employ a postdoctoral student, and

(2) organize the meetings and the visits (between 40000 and 45000 euros). We will

apply for the funding of a software engineer (ADT2010), who will contribute to the

implementation of the results of the ARC in UPPAAL and INTERSMV.

5 Related and forthcoming projects

 This ARC proposal is the continuation of the work done by the S4 team on inter-

face theories for the European Projects COMBEST [30] and SPEEDS [61]. The tool

INTERSMV is one of the main release of INRIA for the COMBEST project. Our

recent experience shows that compositional design reasoning with interface theories

raises a lot of interest from industrial partners (Airbus, EADS, IAI, and SAAB for

SPEEDS and COMBEST projects). We are thus convinced that our implementa-

tions in the UPPAAL and INTERSMV toolsets will be used in many forthcoming

projects.

 14

� As we already said in Section , interface theories ﬁnd applications in a wide range

of areas including web services [16] and product lines [56, 48]. Axel Legay and Kim

Larsen and Andrzej Wasowski are currently discussing a submission to a FET open

call for a European project on web services, product lines, and reliable systems.

The results we will obtain with this ARC, especially on probabilistic and timed

extensions, will certainly inﬂuence the write up of this submission.

R´f´rences

 ee

 [1] P. A. Abdulla, A. Bouajjani, and J. d’Orso. Monotonic and downward closed

 games. J. Log. Comput., 18(1) :153–169, 2008.

 [2] B. T. Adler, L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, V. Raman, and

 P. Roy. Ticc : A tool for interface compatibility and composition. In Proc.

 18th Int. Conference on Computer Aided Veriﬁcation (CAV), volume 4144 of

 Lecture Notes in Computer Science, pages 59–62. Springer, 2006.

 [3] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer

 Science., 126(2) :183–235, 1994.

 [4] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.

 Journal of the ACM, 49(5) :672–713, 2002.

 [5] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating

 reﬁnement relations. In Proc. 9th Int. Conference on Concurrency Theory

 (CONCUR), volume 1466 of Lecture Notes in Computer Science, pages 163–

 178. Springer, 1998.

 [6] D. Angluin. Learning regular sets from queries and counterexamples. Informa-

 tion and Computation, 75(2) :87–106, 1987.

 [7] A. Arnold and M. Nivat. Metric interpretations of inﬁnite trees and semantics

 of non deterministic recursive programs. Theoretical Comput. Sci., 11, 1980.

 [8] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers

 with partial observation. Theoretical Computer Science, 303(1) :7–34, 2003.

 [9] E. Badouel, B. Caillaud, and P. Darondeau. Distributing ﬁnite automata

 through petri net synthesis. Journal on Formal Aspects of Computing, 13 :447–

 470, 2002.

[10] C. Baier, N. Bertrand, and P. Schnoebelen. On computing ﬁxpoints in well-

 structured regular model checking, with applications to lossy channel systems.

 In Proc. 13th Int. Conference on Logic for Programming, Artiﬁcial Intelligence,

 15

� and Reasoning (LPAR), volume 4246 of Lecture Notes in Computer Science,

 pages 347–361. Springer, 2006.

[11] S. Bardin, A. Finkel, and J. Leroux. Faster acceleration of counter automata

 in practice. In Proc. 10th Int. Conference on Tools and Algorithms for the

 Construction and Analysis of Systems (TACAS), volume 2988 of Lecture Notes

 in Computer Science, pages 576–590. Springer, 2004.

[12] S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Flat acceleration in symbo-

 lic model checking. In Proc. 3th Int. Conference on Automated Technology for

 Veriﬁcation and Analysis (ATVA), volume 3707 of Lecture Notes in Computer

 Science, pages 474–488. Springer, 2005.

[13] J. Berendsen and F. W. Vaandrager. Compositional abstraction in real-time

 model checking. In Proc. 6th Int. Convference on Formal Modeling and Analysis

 of Timed Systems (FORMATS), volume 5215 of lncs. Springer, 2008.

[14] N. Bertrand, A. Legay, S. Pinchinat, and J.-B. Raclet. A compositional ap-

 proach on modal speciﬁcations for timed systems. In Proc. 11th Int. Conference

 on Formal Engineering Methods (ICFEM), Lecture Notes in Computer Science.

 Springer, 2009. to appear.

[15] N. Bertrand, S. Pinchinat, and J.-B. Raclet. Reﬁnement and consistency of

 timed modal speciﬁcations. In Proc. 3rd Int. Conference on Language and

 Automata Theory and Applications (LATA), volume 5457 of Lecture Notes in

 Computer Science, pages 152–163. Springer, 2009.

[16] D. Beyer, A. Chakrabarti, and T. A. Henzinger. Web service interfaces. In Proc.

 14th int. Conference on World Wide Web (WWW), pages 148–159. ACM, 2005.

[17] D. Beyer, T. A. Henzinger, and V. Singh. Algorithms for interface synthesis.

 In Proc. 19th Int. Conference on Computer Aided Veriﬁcation (CAV), volume

 4590 of Lecture Notes in Computer Science, pages 4–19. Springer, 2007.

[18] P. Bhaduri. Synthesis of interface automata. In Proc. 3rd Automated Technology

 for Veriﬁcation and Analysis Conference (ATVA), volume 3707 of Lecture Notes

 in Computer Science, pages 338–353. Springer, 2005.

[19] S. Bliudze and J. Sifakis. A notion of glue expressiveness for component-based

 systems. In Proc. 19th Int. Conference on Concurrency Theory (CONCUR),

 volume 5201 of Lecture Notes in Computer Science, pages 508–522. Springer,

 2008.

[20] B. Boigelot and P. Godefroid. Symbolic veriﬁcation of communication protocols

 with inﬁnite state spaces using qdds (extended abstract). In Proc. 8th Int.

 Conference on Computer Aided Veriﬁcation (CAV), volume 1102 of Lecture

 Notes in Computer Science, pages 1–12. Springer, 1996.

 16

�[21] B. Boigelot, S. Jodogne, and P. Wolper. An eﬀective decision procedure for

 linear arithmetic over the integers and reals. ACM Transactions on Computa-

 tional Logic, 6(3) :614–633, 2005.

[22] B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large (exten-

 ded abstract). In Proc. 15th Int. Conference on Computer Aided Veriﬁcation

 (CAV), Lecture Notes in Computer Science, pages 223–235. Springer, 2003.

[23] B. Boigelot, A. Legay, and P. Wolper. Omega-regular model checking. In Proc.

 10th Int. Conference on Tools and Algorithms for the Construction and Analysis

 of Systems (TACAS), volume 2988 of Lecture Notes in Computer Science, pages

 561–575. Springer, 2004.

[24] R. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-

 grams. ACM Computing Survey, 24(3) :293–318, 1992.

[25] B. Caillaud, B. Delahaye, K. Larsen, A. Legay, M. Peddersen, and A. Wasowski.

 Compositional design methodology with constraint markov chains. Technical

 report, INRIA/IRISA Rennes, 2009. submitted for publication.

[26] F. Cassez, T. Chatain, and C. Jard. Symbolic unfoldings for networks of timed

 automata. In ATVA, volume 4218 of Lecture Notes in Computer Science, pages

 307–321. Springer, 2006.

[27] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Synchro-

 nous and bidirectional component interfaces. In Proc. 14th Int. Conference on

 Computer Aided Veriﬁcation (CAV), volume 2404 of Lecture Notes in Computer

 Science, pages 414–427, 2002.

[28] F. Ciesinski and M. Gr¨ßer. On probabilistic computation tree logic. In Valida-

 o

 tion of Stochastic Systems, volume 2925 of Lecture Notes in Computer Science,

 pages 147–188. Springer, 2004.

[29] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization

 skeletons using branching-time temporal logic. In Logic of Programs, volume

 131 of Lecture Notes in Computer Science, pages 52–71. Springer, 1981.

[30] Strep combest (component-based embedded systems design techniques).

 http ://www.combest.eu/home/.

[31] A. David, K. Larsen, A. Legay, U. Nyman, and A. Wasowski. Timed i/o auto-

 mata :a complete speciﬁcation theory for real-time systems. Technical report,

 INRIA/IRISA Rennes, 2009. submitted for publication.

[32] L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, P. Roy, and M. Sorea. Sociable

 interfaces. In Proc. 5th Int. Workshop on Frontiers of Combining Systems

 (FroCos), volume 3717 of Lecture Notes in Computer Science, pages 81–105.

 Springer, 2005.

 17

�[33] L. de Alfaro and T. A. Henzinger. Interface automata. In Proc. 9th ACM SIG-

 SOFT Int. Symposium on Foundations of Software Engineering (FSE), pages

 109–120. ACM Press, 2001.

[34] L. de Alfaro, T. A. Henzinger, and R. Majumdar. Symbolic algorithms for

 inﬁnite-state games. In Proc. 12th Int. Conference on Concurrency Theory

 (CONCUR), volume 2154 of Lecture Notes in Computer Science, pages 536–

 550. Springer, 2001.

[35] L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Timed interfaces. In Proc. 2nd

 Workshop on Embedded Software (EMSOFT), volume 2491 of Lecture Notes in

 Computer Science, pages 108–122. Springer, 2002.

[36] L. Doyen, T. A. Henzinger, B. Jobstmann, and T. Petrov. Interface theories

 with component reuse. In Proc. 8th Int. Conference on Embedded Software

 (EMSOFT’08), pages 79–88. ACM Press, 2008.

[37] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorﬀer,

 S. Sachs, and Y. Xiong. Taming heterogeneity - the ptolemy approach. Proc.

 of the IEEE, 91(1) :127–144, 2003.

[38] M. Emmi, D. Giannakopoulou, and C. S. Pasareanu. Assume-guarantee veriﬁca-

 tion for interface automata. In FM, volume 5014 of Lecture Notes in Computer

 Science, pages 116–131. Springer, 2008.

[39] J. Esparza. Model checking using net unfoldings. Science of Computer Pro-

 gramming, 23 :151–195, 1994.

[40] K. Etessami, M. Z. Kwiatkowska, M. Y. Vardi, and M. Yannakakis. Multi-

 objective model checking of markov decision processes. In Proc. 13th Int. Confe-

 rence on Tools and Algorithms for the Construction and Analysis of Systems

 (TACAS), volume 4424 of Lecture Notes in Computer Science, pages 50–65.

 Springer, 2007.

[41] H. Fecher, M. Leucker, and V. Wolf. Don’t Know in probabilistic systems. In

 SPIN, volume 3925 of LNCS, pages 71–88. Springer, 2006.

[42] G. Feuillade and S. Pinchinat. Modal speciﬁcations for the control theory of

 discrete-event systems. Discrete Event Dynamic Systems, 17(2) :181–205, 2007.

[43] C. Fournet, C. A. R. Hoare, S. K. Rajamani, and J. Rehof. Stuck-free confor-

 mance. In Proc. 16th Int. Conference on Computer Aided Veriﬁcation (CAV),

 volume 3114 of Lecture Notes in Computer Science, pages 242–254. Springer,

 2004.

[44] B. Gebremichael and F. W. Vaandrager. Specifying urgency in timed i/o auto-

 mata. In SEFM, pages 64–74, 2005.

[45] T. A. Henzinger and J. Sifakis. The embedded systems design challenge. In

 Proc. 14th Int. Symposium on Formal Methods (FM), volume 4085 of Lecture

 Notes in Computer Science, pages 1–15. Springer, 2006.

 18

�[46] M. Z. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model

 checking for probabilistic timed automata. In Proc. 2sd Int. Convference on

 Formal Modeling and Analysis of Timed Systems (FORMATS), volume 3253 of

 Lecture Notes in Computer Science, pages 293–308. Springer, 2004.

[47] K. G. Larsen. Modal speciﬁcations. In Automatic Veriﬁcation Methods for

 Finite State Systems, volume 407 of Lecture Notes in Computer Science, pages

 232–246. Springer, 1989.

[48] K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O automata for interface

 and product line theories. In Proc. 16th European Symposium on Programming

 Languages and Systems (ESOP’07), volume 4421 of Lecture Notes in Computer

 Science, pages 64–79. Springer, 2007.

[49] K. G. Larsen and L. Xinxin. Equation solving using modal transition systems.

 In Proc. 5th Annual IEEE Symposium on Logic in Computer Science, LICS,

 pages 108–117. IEEE Computer Society Press, 1990.

[50] The Li`ge Automata-based Symbolic Handler (LASH).

 e Available at

 http ://www.montefiore.ulg.ac.be/~boigelot/research/lash/.

[51] A. Legay. T(o)rmc : A tool for (omega-)regular model checking. In Proc. 20th

 Int. Conference on Computer Aided Veriﬁcation (CAV), volume 5123 of Lecture

 Notes in Computer Science, pages 548–551. Springer, 2008.

[52] A. Legay, A. Murawski, J. Ouaknine, and J. Worrell. On automated veriﬁ-

 cation of probabilistic programs. In Proc. 14th Int. Conference on Tools and

 Algorithms for the Construction and Analysis of Systems (TACAS), volume

 4963 of LNCS, pages 173–187. Springer, 2008.

[53] D. Lime, O. H. Roux, C. Seidner, and L.-M. Traonouez. Romeo : A para-

 metric model-checker for petri nets with stopwatches. In S. Kowalewski and

 A. Philippou, editors, Proc. 15th Int. Conference on Tools and Algorithms for

 the Construction and Analysis of Systems (TACAS), volume 5505 of Lecture

 Notes in Computer Science, pages 54–57, York, United Kingdom, Mar. 2009.

 Springer.

[54] N. Lynch and M. R. Tuttle. An introduction to Input/Output automata. CWI-

 quarterly, 2(3), 1989.

[55] K. L. McMillan. Using unfolding to avoid the state space explosion problem in

 the veriﬁcation of asynchronous circuits. In Proceedings of CAV, volume 663 of

 Lecture Notes in Comupter Science, pages 164–177. Springer, 1992.

[56] U. Nyman. Modal Transition Systems as the Basis for Interface Theories

 and Product Lines. PhD thesis, Aalborg University, Department of Compu-

 ter Science, September 2008.

[57] A. Pnueli. The temporal logic of programs. In Proc. 18th Annual Symposium

 on Foundations of Computer Science (FOCS’77), pages 46–57, 1977.

 19

�[58] J.-B. Raclet. Quotient de sp´ciﬁcations pour la r´utilisation de composants.

 e e

 PhD thesis, Universit´ de Rennes I, december 2007. (In French).

 e

[59] J.-B. Raclet. Residual for component speciﬁcations. In Proc. 4th Int. Workshop

 on Formal Aspects of Component Software (FACS), volume 215 of Electronic

 Notes Theoretical Computer Science, pages 93–110, 2008.

[60] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay, and R. Passe-

 rone. Modal interfaces : Unifying interface automata and modal ciﬁcations. In

 Proc. 9th Int. Conference on Embedded Software (EMSOFT’09), pages 87–96.

 ACM, 2009.

[61] Speeds. http ://www.speeds.eu.com.

[62] S. Tripakis, B. Lickly, T. A. Henzinger, and E. A. Lee. On relational interfaces.

 In Proc. 9th Int. Conference on Embedded Software (EMSOFT’09), pages 67–

 76. ACM, 2009.

[63] The UPPAAL tool. Available at http ://www.uppaal.com/.

[64] P. Wolper and B. Boigelot. Verifying systems with inﬁnite but regular state

 spaces. In Proc. 10th Int. Conference on Computer Aided Veriﬁcation (CAV),

 volume 1427 of Lecture Notes in Computer Science, pages 88–97. Springer-

 Verlag, 1998.

[65] N. Yevtushenko, T. Villa, R. K. Brayton, A. Petrenko, and A. L. Sangiovanni-

 Vincentelli. Sequential synthesis by language equation solving. Technical Re-

 port UCB/ERL M03/9, EECS Department, University of California, Berkeley,

 2003.

[66] Y. Zhou. Interface Theories for Causality Analysis in Actor Networks. PhD

 thesis, University of California, Berkley, 2007.

 20

 </div>

