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Summary

Several industrial sectors involving complex embedded systems have re-
cently experienced deep changes in their organization, aerospace and
automotive being the most prominent examples. In the past, they were
organized around vertically integrated companies, supporting in-house
design activities from specification to implementation. Nowadays, sys-
tems are tremendously big and complex, and it is almost impossible for
one single team to have the complete control of the entire chain of de-
sign from the specification to the implementation. In fact, complex sys-
tems now result from the assembling of several components. These many
components are in general designed by teams, working independently
but with a common agreement on what the interface of each component
should be. Such an interface precises the behaviors expected from the
component as well as the environment in where it can be used. The main
advantage is that it does not impose any constraint on the way the com-
ponent is implemented, hence allowing for independent implementation.
According to state of practice, interfaces are typically described using
Word/Excel text documents or modeling languages such as UML/XML.
We instead recommend relying most possibly on mathematically sound
formalisms, thus best reducing ambiguities. We propose to study mathe-
matical formalisms for interface theories with all the operators needed to
reason on them in a proper way, i.e., composition, refinement, quotient,
and dissimilar alphabets. We will also focus on implementation (integra-
tion in UPPAAL and INTERSMV toolsets) and efficient algorithms. Our
results will be extended to timed and stochastic systems. Finally, we will
also consider concurrency and modular verification.
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1 Structure of the document and summary of the

proposition

This document is a proposal for an ARC Collaborative ; it is divided into four
sections. In Section 2, we present the partners involved in the proposition. In Section
3, we present our research proposal on interface theories. The proposal contains a
brief state-of-the art, our objectives, a research calendar, and the competences of the
partners. Section 4 discusses the meetings and the costs. Finally Section 5 briefly
discusses related research projects.

2 The teams

The project will be leaded by Axel Legay, CR2 at INRIA/IRISA Rennes since
December 2008. Three teams are involved in the application : S4 (INRIA, Rennes),
IRCCyN (Nantes), and Aalborg (Denmark). Competences provided by the members
of these teams will be emphasized in the research proposal (see Section 3.5). The
rest of this section provides a brief description of the teams.

1. The S4 Team at INRIA/IRISA Rennes. The team is leaded by Benôıt Caillaud.
Members of the S4 team that will be involved in the project : Axel Legay,
Benôıt Delahaye (PhD Student), and Benôıt Caillaud. Claude Jard, professor
at ENS Cachan and member of the DISTRIBCOM team at IRISA/INRIA
Rennes will also be involved in the project.

2. IRCCyN Nantes. Members of the IRCCyN team involved in the project : Di-
dier Lime and Olivier H. Roux.

3. Aalborg Team leaded by Kim Larsen in Denmark. Members of the Aalborg
team that will be involved in the project : Kim Larsen, Alexandre David. Mik-
kel Pedersen, PhD student of the team will also be involved. Andrzej Wasowski,
an associate professor at IT Unviersity of Copenhagen and collaborator of Kim
Larsen within the MT-LAB project (www.mtlab.dk) will also be involved.

Remark 1 Other members of the S4 and the VERTECS teams at Rennes such as
Albert Benveniste and Nathalie Bertrand and Sophie Pinchinat have shown interest
to our project and will punctually contribute.
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3 The project

3.1 Scientific focus

Several industrial sectors involving complex embedded systems have recently
experienced deep changes in their organization, aerospace and automotive being
the most prominent examples. In the past, they were organized around vertically
integrated companies, supporting in-house design activities from specification to
implementation.

Nowadays, systems are tremendously big and complex, and it is almost impos-
sible for one single team to have the complete control of the entire chain of design
from the specification to the implementation. In fact, complex systems now result
from the assembling of several components. These many components are in general
designed by teams, working independently but with a common agreement on what
the interface of each component should be. Such an interface precises the beha-
viors expected from the component as well as the environment in where it can be
used. The main advantage is that it does not impose any constraint on the way the
component is implemented :

Several components can be implemented by different teams of engineers
providing that those teams respect the interfaces on which all of them
agree.

According to state of practice, interfaces are typically described using Word/Excel
text documents or modeling languages such as UML/XML. We instead recommend
relying most possibly on mathematically sound formalisms, thus best reducing am-
biguities. Mathematical foundations that allow to reason at the abstract level of
interfaces, in order to infer properties of the global implementation, and to de-
sign or to advisedly (re)use components is a very active research area, known as
compositional reasoning [45]. Aiming at practical applications in fine, the software
engineering point of view naturally leads to the following requirements for a good
theory of interfaces.

Remark 2 In the rest of the document, one will use the following equivalences (de-
pending on the context) : specification = interface ; implementation = component.

1. It should be decidable whether an interface admits an implementation (a mo-
del). This means that one should be capable to decide whether the require-
ments stated by the interface can be implemented. One should also be capable
to synthesize an implementation for such an interface. In our theory, an im-
plementation shall not be viewed as a programming language but rather as a
mathematical object that represents a set of programming languages sharing
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common properties. The ability to decide whether a given component imple-
ments a given interface is of clear importance, and this must be performed
with efficient algorithms.

2. It is important to be able to replace a component by another one without
modifying the behaviors of the whole design. At the level of interfaces, this
corresponds to the concept of Refinement. Refinement allows one to replace, in
any context, an interface by a more detailed version of it. Refinement should
entail substitutability of interface implementations, meaning that every im-
plementation satisfying a refinement also satisfies the larger interface. For the
sake of controlling design complexity, it is desirable to be able to decide whe-
ther there exists an interface that refines two different interfaces. This is called
shared refinement . In many situations, we are looking for the greatest lower
bound , i.e., the shared refinement that could be refined by any other shared
refinement.

3. Large systems are concurrently developed for their different aspects or view-
points by different teams using different frameworks and tools. Examples of
such aspects include the functional aspect and the safety aspect. Each of these
aspects requires specific frameworks and tools for their analysis and design.
Yet, they are not totally independent but rather interact. The issue of dealing
with multiple aspects or multiple viewpoints is thus essential. This implies that
several interfaces are associated with a given component, namely (at least) one
per viewpoint. These interfaces are to be interpreted in a conjunctive way. This
conjunction operation should satisfy the following property :

Given two view-points represented by two interfaces, any implemen-
tation that satisfies the conjunction must satisfy the two view-points.

4. The interface theory should also provide a combination operation, which re-
flects the standard interaction/composition between systems. In practice, one
should be capable to decide whether there exists at least one environment
in where two components can work together, i.e., in where the composition
makes sense. Another, but more difficult, objective is to synthesize such an
environment. Finally, the composition operation should satisfy the following
property :

Given two components satisfying two interfaces, the theory must en-
sure that the composition of the two components satisfies the com-
position of their corresponding interfaces.

5. A quotient operator, dual to composition is of interest to perform incremental
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design. Intuitively, the quotient enables to describe a part of a global specifi-
cation assuming another part is already realized by some component.

6. Complex systems are built by combining components possessing dissimilar
alphabets for referencing ports and variables. It is thus important to properly
handle those different alphabets when combining interfaces.

All the above operations and properties should be checked and performed with ef-
ficient algorithms. In addition, a good interface theory should have the independent
implementability property. More precisely, the operations of conjunction and compo-
sition must be associative, meaning that the systems can be composed in any order.
Moreover, those operations should be stable with respect to refinement.

Our main objective is to provide new mathematical foundations for interface
theories. The rest of the document is divided into four sections. In Section 5, we
will discuss existing results on interface theories. In Section 3.3, we will describe our
research proposal. Sections 3.4 and 3.5 discuss the calendar and the competences,
respectively.

3.2 State-of-the-art (brief account on)

Building good interface theories has been the subject of intensive studies (see,
e.g., [45, 33, 19, 37, 43, 32, 35]) and the concept find applications in a wide range of
areas including web services [16] and product lines [56, 48]. Recently, two models have
been emphasized : (1) interface automata [33] and (2) modal specifications [47]. Inter-
face automata is a game-based variation of the well-known model of input/output
automata [54] which deals with open systems, their refinement and composition,
and puts the emphasis on interface compatibility. Modal specifications is a language
theoretic account of a fragment of the modal mu-calculus logic [42] which admits a
richer composition algebra with product, conjunction and quotient operators.

Modal specifications correspond to deterministic modal automata [47], i.e., au-
tomata whose transitions are typed with may and must modalities. A modal spe-
cification thus represents a set of implementations ; informally, a must transition is
available in every component that implements the modal specification, while a may
transition needs not be. The components that implement modal specifications are
prefix-closed languages, or equivalently deterministic automata/transition systems.

Satisfiability of modal specifications is decidable. Refinement between modal spe-
cifications coincides with language inclusion [47]. Conjunction is effectively computed
via a product-like construction. It can be shown that the conjunction of two modal
specifications correspond to their greatest common refinement. Combination of mo-
dal specifications, handling synchronization products à la Arnold and Nivat [7], and
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the dual quotient operator can be efficiently handled in this setting [58, 59].

In interface automata [33], an interface is represented by an input/output auto-
maton [54], i.e., an automaton whose transitions are labeled with input or output
actions. The semantics of such an automaton is given by a two-player game : an
Input player represents the environment, and an Output player represents the com-
ponent itself. Interface automata do not encompass any notion of implementation,
because one cannot distinguish between interfaces and implementations.

Refinement between interface automata corresponds to the alternating refine-
ment relation between games [5], i.e., an interface refines another if its environment
is more permissive whereas its component is more restrictive. Shared refinement is
defined in an ad-hoc manner [36] for a particular class of interfaces [27]. Contrary
to most interfaces theories, the game-based interpretation offers an optimistic treat-
ment of composition : two interfaces can be composed if there exists at least one
environment (i.e., one strategy for the Input player) in which they can interact to-
gether in a safe way (i.e., whatever the strategy of the Output player is). This is
referred to as compatibility of interfaces. A quotient, which is the adjoint of the
game-based composition, has been proposed in [18].

It is worth mentioning that, in existing work on interface automata and modal
specifications, there is nothing about dissimilar alphabets. This is somehow surpri-
sing as it seems to be a quite natural question when performing operations that
involve several components, e.g., conjunction, composition, and quotient. In fact, as
stated in [60], an explicit mechanism to handle dissimilar alphabets is not needed
when considering interface automata, since conjunction is not discussed for this mo-
del. For the case of composition/quotient, instead, we shall see that the notion is
implicitly encompassed in the definition of compatibility. Conjunction and quotient
operators [47, 58, 59] that have been proposed for modal specification do not take
dissimilar alphabet into account.

In conclusion, both models have advantages and disadvantages :

– Interface automata is a model that allows designers to make assumptions on
the environment, which is mainly useful to derive a rich notion for composition.
In addition, the notion of dissimilar alphabets is not needed. Unfortunately,
the model is incomplete as conjunction and shared refinement are not defined.

– Modal specification is a rich language algebra model on which most of require-
ments for a good interface theory can be considered. Unfortunately, may and
must modalities are not sufficient to derive a rich notion for composition in-
cluding compatibility. Moreover, the notion of dissimilar alphabets is missing.
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In a recent work, we have proposed a new model called modal interfaces [48, 60],
which combines advantages of modal specifications and interface automata. Roughly
speaking, modal interfaces are modal specifications combined with the composition
operation developed for interface automata. The idea is to typeset the may and must
transition with Inputs and Outputs that are used only when performing the com-
position operation and barely ignored otherwise. The model also encompasses the
concept of dissimilar alphabets. We have proposed efficient algorithms for computing
composition, conjunction, and quotient as well as to check for refinement and satis-
fiability. The model of modal interfaces (and several extensions) is implemented in a
tool called INTERSMV (the first version of the tool will be released in January 2010
for the review of the European Project COMBEST [30]). The tool relies on powerful
symbolic representations (combination of Binary Decision Diagrams [24]) that allow
for conciseness and efficiency. INTERSMV is currently evaluated on several case
studies coming from two European projects : COMBEST [30] and SPEEDS [61].

Remark 3 As we shall see in Section 3.3.2, probabilistic and timed extensions of
interface theories also exist. However, the development of these models does not
reach the maturity of the one of modal interfaces.

3.3 Our objectives

Our objectives are (1) to improve the theory of modal interfaces and (2) to study
extensions that will allow to model a broader class of systems as well as to express
more interactions between them. Our research proposal can be divided in four main
parts :

1. In Section 3.3.1, we propose several directions to improve existing results on
modal interfaces. This includes heuristics to increase the efficiency of the al-
gorithms as well as generalizing existing operators.

2. In Section 3.3.2, we propose several extensions of interface theories in order to
take stochastic and timed behaviors into account.

3. In Section 3.3.3, we suggest to use interface theories in order to verify a system
by looking at its various components.

4. In Section 3.3.4 we propose a new operator to handle concurrency in an explicit
manner.

The two first parts of the proposal suggest extensions of the work we conducted over
the two last years. The last two points suggest new research directions.

3.3.1 Improving the modal interfaces framework

As stated above, the algorithms developed for modal interfaces are already
quite efficient. However, we believe that there is still room for improvements. As
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an example, most of existing algorithms for computing the composition of two in-
terfaces do not try to reduce the size1 of the result. It is thus not difficult to find
situations where the composition algorithm produces a huge automaton while a very
small one also exists [17, 38]. We will investigate heuristic methods such as learning
algorithms [6] (already deployed for interface automata [17, 38]) or sat-solvers [17] to
improve the composition operator.

Our implementation of modal interfaces can incorporate variables. This is a fea-
ture that is not present in most of existing interface theories. Those variables can be
used, as an example, to model global and shared resources [32]. Due to the imple-
mentation and for decidability reasons, those variables have to be range-bounded.
It is however sometimes more convenient to use an infinite-state representation (see
[64] for an overview). As an example, consider a system manipulating integer va-
riables ; it may be easier to assume that those variables are not bounded rather than
fixing an arbitrary maximal value2 for them [21, 11, 12]. Another example is the
one of communication protocols : it may be better to assume that the number of
places in a communication channel is not bounded rather than assuming an arbi-
trary bound which may not reflect the reality [20]. We believe that all the algorithms
developed for modal interfaces extend to (semi-)algorithms for infinite-state inter-
faces. For doing so, we propose to use principles that are similar to those introduced
in [22, 23, 34, 10, 1].

Finally, we would like to extend the theory in order to handle nondeterministic
behaviors. Nondeterminism may arise when the system has to take internal decisions
that are not visible to the external world. A part of the theory of interface automata
and modal specifications already extends to this setting. However, there is nothing
for the quotient operator.

Remark 4 There exists several other works on quotient for nondeterministic sys-
tems (e.g., [8, 49, 65]). It is worth mentioning that those works propose techniques
that are either capable to synthesize an formula or a system, but not a modal inter-
face3.

3.3.2 Probabilities and time

Stochastic and timed aspects have not been studied in details for interface theo-
ries. Those aspects are however of crucial interest. Time can be a crucial parameter
in practice, for example in embedded systems. Probabilities can be used to ensure
fairness and robustness of communication systems as well as to model faults.

1In terms of number of states.
2The size of the range would depend on the architecture.
3Not even a modal specification.
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In a very recent work [25], we have proposed what seems to be the first complete
interface theory for stochastic systems. In our theory, systems are represented by
Markov Chains and interfaces by Constraint Markov Chains (CMCs in short). CMCs
are Markov Chains whose probability distributions are replaced by constraints that
represent a set of probability distributions4. The model thus allows to finitely re-
present a possibly infinite set of Markov Chains.

CMCs’s theory currently suffers from a major drawback : it does not allow for
non stochastic behavior. This is problematic since it is well-known that many models
require to mix stochastic and nonstochastic behaviors.

We propose to enrich CMCs with nonstochastic behaviors by adding may and
must transitions to the model. In the new model, one will distinguish between two
types of states : (1) the stochastic states in where one moves to some next state
with a given probability (example : there is a probability that the system moves
with some fault and a probability that it moves correctly), and (2) the nondetermi-
nistic states in where one may or must move to some next state, depending of the
choice made by the component/environment. This new extension, which we will cal-
led Constraint Modal Markov Decision Processes (CMMDPs in short), corresponds
to an interface theory for Markov Decision Processes (such a theory does not yet
exists). We believe that the algorithms and the theory for CMMDPS could be ob-
tained from a combinations of those defined for CMCs and those defined for modal
specifications. The main difficulty will be to make this combination in such a way
that the new model satisfies all good requirements for an interface theory as well as
the independent design property. We also plan to give a game-based flavor to the
composition operation. Like for modal interfaces, this should be done by equipping
the nonprobabilistic transitions with Inputs and Outputs modalities.

As a second step, we plan to move from Markov Decision Processes to Proba-
bilistic timed automata [46], i.e., timed automata whose discrete transitions may be
enriched with stochastic behaviors. For doing so, we will enrich CMMDPS with
clocks. This will mainly impact the semantic of the may and must transitions. We
already studied modal event-clock specifications, a timed extension of modal specifi-
cations [15, 14]. We propose to marry the algorithms developed for modal event-clock
specifications with those we will propose for CMMDPS. In a second step, we also
plan to study a timed extension the modal interface theory, i.e., an extension of
timed modal specification with Inputs and Outputs modalities in addition to the
may and must modalities. In this context, we propose to define a new timed game to
perform the composition operation. Our definitions should ensure that one cannot
win the game with a strategy that blocks the time. It is known that considering
non-blocking strategies makes it harder to ensure the independent implementability

4As an example, each transition can be equipped with an interval and the probability to take
this transition is any value in the interval [41].
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property even for the simple case of interface automata [35, 31].
The new theories will be implemented in the UPPAAL Toolset [63]. UPPAAL is

a tool for the specification and the verification of timed systems, which has recently
been enriched with probabilistic timed automata. UPPAAL is under development
and maintained since more than ten years. The tool has been downloaded 30 000
times and successfully applied to various case studies submitted by industrial part-
ners 5 (NASA, CNES, Bosch, ABB, ...). Its development is strategic for Aalborg
university. UPPAAL provide efficient data structures to manipulate probabilistic ti-
med automata. The tool also proposes several game-based algorithms for checking
composition of timed automata. We believe that these features will serve as a good
basis to develop efficient algorithms and data structures for our new models.

Remark 5 We will not implement the probabilistic/timed extension of interface
theories in INTERSMV. Indeed, INTERSMV is a tool that uses efficient data struc-
ture and symbolic representations that are designed for nondeterministic systems
only. We have no hope that such structures can be adapted to time and probabilistic
systems.

Remark 6 We hope that some of the results we will obtain in Section 3.3.1 will also
extend to the new models discussed in this section. However, we will not consider
the quotient operator. Indeed, this operator is not defined for CMCs and we believe
that it is a very difficult problem that deserves its own research project.

3.3.3 Modular verification and link with temporal logics

We believe that it is important to provide engineers with a mechanism to check
whether the interfaces they specify satisfy some requirements written in a concise
language. For doing so, we propose to express such requirements with temporal lo-
gics [4, 57, 29, 3, 28]. One should thus be capable to decide whether an interface
satisfies a given property expressed in such a logic – which also implies that any im-
plementation of the interface should also satisfy the property. Moreover, one should
be capable to decide whether the whole design satisfies a given property only by
observing the properties satisfied by its components. This approach is called modu-
lar verification. It is a very important feature as it allows to reduce the complexity
of the verification process 6. We propose to enrich our models with a (modular)
verification procedure. This is a tedious task, especially when taking stochastic and
timed behaviors into account (see [40] for discussions regarding the case of stochastic
systems).

5The tool offers nice user interfaces that allow for a direct use by industrials/engineers. Those
interfaces are definitively part of the success of UPPAAL.

6There are also situations where the verifications techniques are not powerful enough to work
on the whole design, but can give an answer when considering the components separately.
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Observe that Modular verification already exists at the level of components
through the conjunction operation : the conjunction of two components must sa-
tisfy the conjunction of their corresponding interfaces. Here we go one step further
since we consider the level of interfaces rather than the one of components. Other
alternatives exist. As an example, one could imagine to use temporal logics as a
formalism for representing interfaces. However, we believe that operations such as
composition or refinement are much more easier to understand at the level of auto-
mata than at the one of formula.

One of the major difficulties here will be to ensure that if an interface satisfies
some property, then the property is also satisfied by any component that is an
implementation of the interface. This is a hard problem, especially when considering
combination operators such as conjunction, composition, or refinement.

Remark 7 The tool Chic [27] proposes to specify properties of interface automata
with the Alternating Temporal Logic [4]. However, there is nothing about modular
verification for such interfaces.

Remark 8 The above proposal does not discuss the choice of the temporal logic that
will be used. This choice will mostly depend on the model under consideration.

Another interesting problem related to temporal logics is the one that consists
in synthesizing an interface from a given property. It would also be of interest to
be capable to synthesize a composition for two interfaces and to ensure that this
composition also satisfies some property. Up to now, the composition operation
defined for interface automata (and hence for modal interfaces) only ensures that
their exists an environment in where the two interfaces can work together. This
environment may either be useless or too permissive, hence the use of temporal
logic to make hypothesis on its behaviors.

Remark 9 There are a lot of work on synthesizing an automaton from a formula
but, to the best of our knowledge, nothing has been done on modal interfaces or on
its probabilistic/timed variants. What we suggest for composition is also definitively
new.

Finally, model checking temporal properties of interfaces raises the problem of
describing counter-examples for those cases where the formula is not satisfied. Fin-
ding a nice way to report such counter-examples to the user should also be investi-
gated.
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3.3.4 Concurrency made explicit

The composition operator naturally introduces concurrency into the system but
the usual analysis techniques will explicitly or implicitly compute the product of all
the components, thus destroying this concurrency. We will therefore investigate the
possibility of maintaining the concurrency of the interfaces expressed as multiple
components through the use of true concurrency semantics and unfoldings [39, 55].
One possible interest of considering such concurrent interfaces is to explicit causal
dependencies, which could be of great importance in specifications. The question
of composition, conjunction, refinement, and even causalities [62, 66] raise a lot of
original problems when considering this new operator. Observe also that maintaining
concurrency may allow to avoid building a huge automaton for the composition
operation (see Section 3.3.1).

Remark 10 UPPAAL already allows for an explicit representation of concurrence.
However, this is only for the composition defined on timed automata [3] or the one
defined on timed input/output automata [44, 13]. Those compositions are much
simpler than the one defined on interfaces.

3.4 Calendar

Some results on improving modal interfaces and timed/probabilistic extensions
should be obtained at the end of the first year. We are quite confident since (1) we
already have some preliminary results on stochastic and timed systems that could be
extended, and (2) INTERSMV should serve as a good basis to observe interactions
between components and to develop heuristics to improve the composition opera-
tion. Nondetermism and infinite-state extensions should be investigated during the
second year.

Modular verification and concurrency, which are new directions in this area, will
be studied in parallel. We will start with modal interfaces and, if successful, we will
move to timed/stochastic extensions.

3.5 Competences of partners and interactions

By reading the research proposal, one can see that competences are needed in
(at least) five areas : (1) interface theories, (2) timed systems, (3) probabilistic
systems, (4) concurrent systems, and (5) implementation of mathematical theories
with a practical evaluation. We now give more insights regarding the competences
provided by each partner and the existing collaborations between them. It is worth
mentioning that collaborations already exist between all the teams.
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1. Both Axel Legay and Benôıt Caillaud are experts in interface theories on
which they wrote several papers. In addition to the models of modal interfaces
and timed modal specifications, Axel Legay has collaborated with NASA and
is the author of a tool called TICC [2]. This tools implements the theory of
interface automata (with the exception of the quotient operator) and one of its
extensions called sociable interfaces [32]. He also proposed several new model
checking techniques for infinite-state and stochastic systems as well as new
algorithms to solve (timed) games. Those algorithms have been implemented
in three tools : LASH [50], T(O)RMC [51], and APEX [52]. Benôıt Caillaud
has been working on topics related to the synthesis and control of concurrent
systems. He is the author of the Synet Petri-net synthesis software [9], a tool
which has found applications in work-flow engineering and communicating
distributed control synthesis. Claude Jard is an expert in concurrency, timed
systems, and unfolding theory. Recently, in cooperation with Thomas Chatain,
he solved the problem of constructing finite complete prefixes of unfoldings
of safe time Petri nets. A similar work has also been done for networks of
timed automata and is based on symbolic representations [26]. His current
interest is the introduction of parameters and the use of unfolding in dynamical
verification (supervision) in cooperation with the IRCCyN’s group.

2. Both Didier Lime and Olivier H. Roux are experts in (concurrent) timed sys-
tems and their implementation. They are the core developers of the Romeo
tool [53] for the verification of time Petri nets. They have been doing some
recent work on symbolic unfoldings with Claude Jard. Didier Lime is also ex-
pert in timed games and participates in the development of UPPAAL with
Aalborg, especially UPPAAL-Tiga, the flavor of Uppaal dedicated to timed
games.

3. Kim Larsen and his team are experts in the area of timed systems. Together
with various team members, Larsen developed and promoted the UPPAAL
toolset. Kim Larsen has ongoing collaborations with S4 on interface theories
(especially stochastic and timed extensions [25, 31]). He also has a wide know-
ledge of probabilistic systems and probabilistic timed automata.

The three teams share common competences but are also complementary. As an
example, Rennes is the leader for interface theories and the development of INTER-
SMV but it needs competences from IRCCyN when considering (concurrent) timed
systems, especially when switching to implementation in UPPAAL and modular
verification. This knowledge is easily exploitable due to the geographic proximity
of Nantes and Rennes. Aalborg is an indisputable partner. Indeed, they will pro-
vide other teams with UPPAAL, and they are the one who have the expertise on
probabilistic timed automata and their implementation.
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4 Meetings and Costs

We plan to have bimensual meetings as well as several visits between the mem-
bers of the different teams. We will also organize a workshop to present our results
at the end of the second year. Regarding the costs, we would like to ask for 20000
euros for the first year and between 20000 and 25000 euros for the second year (the
5000 euros difference would be for the organization of the workshop).

Since the teams involved in the project are not located in the same site/city/country,
we believe that a postdoctoral student will be of a great help in order to coordinate
a part of the work. The student will work full time on the project and she/he will
mainly focus on probabilistic and timed extensions (see Section 3.3.2). One of her/his
main duty will be to be responsible for the development of efficient algorithms for
handling such models. She/he will also be responsible for the implementation in
UPPAAL. The postdoc will be employed by the S4 team at Rennes and she/he will
have to visit the other teams.

In this proposition, implementation represents a substantial amount of work. In
order to help us to make this objective, we will also apply for an engineer (ADT
2010). The engineer will work in close collaboration with the UPPAAL team. She/he
will also participate to the development of INTERSMV.

As a summary, we ask for money to (1) employ a postdoctoral student, and
(2) organize the meetings and the visits (between 40000 and 45000 euros). We will
apply for the funding of a software engineer (ADT2010), who will contribute to the
implementation of the results of the ARC in UPPAAL and INTERSMV.

5 Related and forthcoming projects

This ARC proposal is the continuation of the work done by the S4 team on inter-
face theories for the European Projects COMBEST [30] and SPEEDS [61]. The tool
INTERSMV is one of the main release of INRIA for the COMBEST project. Our
recent experience shows that compositional design reasoning with interface theories
raises a lot of interest from industrial partners (Airbus, EADS, IAI, and SAAB for
SPEEDS and COMBEST projects). We are thus convinced that our implementa-
tions in the UPPAAL and INTERSMV toolsets will be used in many forthcoming
projects.
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As we already said in Section , interface theories find applications in a wide range
of areas including web services [16] and product lines [56, 48]. Axel Legay and Kim
Larsen and Andrzej Wasowski are currently discussing a submission to a FET open
call for a European project on web services, product lines, and reliable systems.
The results we will obtain with this ARC, especially on probabilistic and timed
extensions, will certainly influence the write up of this submission.
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[50] The Liège Automata-based Symbolic Handler (LASH). Available at
http ://www.montefiore.ulg.ac.be/~boigelot/research/lash/.

[51] A. Legay. T(o)rmc : A tool for (omega-)regular model checking. In Proc. 20th
Int. Conference on Computer Aided Verification (CAV), volume 5123 of Lecture
Notes in Computer Science, pages 548–551. Springer, 2008.

[52] A. Legay, A. Murawski, J. Ouaknine, and J. Worrell. On automated verifi-
cation of probabilistic programs. In Proc. 14th Int. Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), volume
4963 of LNCS, pages 173–187. Springer, 2008.

[53] D. Lime, O. H. Roux, C. Seidner, and L.-M. Traonouez. Romeo : A para-
metric model-checker for petri nets with stopwatches. In S. Kowalewski and
A. Philippou, editors, Proc. 15th Int. Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), volume 5505 of Lecture
Notes in Computer Science, pages 54–57, York, United Kingdom, Mar. 2009.
Springer.

[54] N. Lynch and M. R. Tuttle. An introduction to Input/Output automata. CWI-
quarterly, 2(3), 1989.

[55] K. L. McMillan. Using unfolding to avoid the state space explosion problem in
the verification of asynchronous circuits. In Proceedings of CAV, volume 663 of
Lecture Notes in Comupter Science, pages 164–177. Springer, 1992.

[56] U. Nyman. Modal Transition Systems as the Basis for Interface Theories
and Product Lines. PhD thesis, Aalborg University, Department of Compu-
ter Science, September 2008.

[57] A. Pnueli. The temporal logic of programs. In Proc. 18th Annual Symposium
on Foundations of Computer Science (FOCS’77), pages 46–57, 1977.

19



[58] J.-B. Raclet. Quotient de spécifications pour la réutilisation de composants.
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